MARA SOUTHEASTERN SECTION

Ninety-Eighth Annual Meeting

Lee University

Cleveland, Tennessee

Thursday—Saturday, March 7-9, 2019

Abstracts for all Talks

SS2.1	Friday	Numerical computation of transverse Mercator projection	
	2:00 p.m.	coefficients using complex Fourier analysis	
Pierre Abbat			
The Gauss-Krüg	er transverse Mercator	projection is used in various coordinate grids, including about	
half the United	States state plane zone:	s and UTM. The original method, Krüger-n, which is conformal	
by construction	, was not widely adopte	ed because it requires hyperbolic functions or sines of complex	
numbers, neithe	numbers, neither of which was available on early calculators. The Krüger- λ series and its descendants		
Redfearn and T	Redfearn and Thomas use nothing more complicated than trig functions and were therefore widely		
adopted, even t	adopted, even though they are accurate only over a few degrees of longitude. It is not obvious from		
looking at the la	looking at the latter series why they are conformal. I present a method of computing the equivalent		
of the Krüger-n	of the Krüger-n coefficients, giving millimeter accuracy over 80% of the globe with only four terms.		
The method consists of taking the Fourier transform of the forward and inverse function from length			
along the meridian of the sphere to that of the ellipsoid. The projection is then computed by			
composing thre	composing three projections, of which the first two are well-known and the third is obtained by		
passing a complex number to the resulting Fourier series.			

SS8.6	Saturday	The MAA Instructional Practices Guide in Action	
	11:40 a.m.		
Martha Abell		Georgia Southern University	
A team of over 50 fac	culty members from v	varied institutions across the nation developed the MAA	
Instructional Practice	Instructional Practices Guide to share effective, evidence-based practices instructors can use to		
facilitate meaningful	facilitate meaningful learning for mathematics students. The hope is that the IP Guide will serve as a		
catalyst for communi	catalyst for community-wide transformation toward improved learning experiences and equitable		
access to mathematics for all students. The presentation will be an overview of the IP Guide,			
describing the topics covered, how it can be used to promote student learning and access, how it can			
be used in professional development programs, and how members of the mathematics community			
can get involved in the development of future editions of the IP Guide.			

DS.1	Friday	Modeling Infectious Disease: A Mathematician's
	9:00 a.m.	Playground
Zachary Abernathy		Winthrop University
Zachary AbernathyWinthrop UniversityHow can mathematical models help us gain insight into the spread of an infectious disease within a host? We'll begin by showcasing useful techniques for describing disease pathogenesis through the lens of a simple HIV model, introducing tools such as basic reproductive ratio and local/global stabilit analysis. From there, we'll discuss ways to expand upon this model to address additional questions, such as why our immune systems can naturally fight off some viruses but not others. Along the way, we'll touch on how studying these models can lead to a variety of interesting research questions in both applied and theoretical mathematics.		chniques for describing disease pathogenesis through the ols such as basic reproductive ratio and local/global stability expand upon this model to address additional questions, urally fight off some viruses but not others. Along the way, s can lead to a variety of interesting research questions in

Saturday	Counting Integer Sequences with Restrictions	
10:10 a.m.		
Skyler Addy The Citadel		
A problem posed in Mathematics Magazine (Problem 2050) asked for the number of sequences for		
the form a_1a_9 given a_i in {1,2,3} and other criteria. In this poster we describe the process we		
used to count the sequences and how it was simplified into a readable proof. We have submitted the		
solution to the problem to Mathematics Magazine for consideration to be published.		
	10:10 a.m. Nathematics Magazir ven a_i in {1,2,3} and juences and how it w	

SS9.5	Saturday	Experiences of Murray State University PICMath Students
	11:20 a.m.	
Donald Adongo		Murray State University
challenges faced by t	he different groups i evaluating whether o	ct businesses that students worked on. We look at the n addition to the highlights. The problems ranged from company expected production hours were attainable to

CP1.2	Friday	Modeling Immune-Mediated Activations and Interactions
	2:20 p.m.	in Breast Cancer Progression
Kodwo Annan		Georgia Gwinnett College

vaccines and resulted in the decrease in breast cancer killing rates. It was also observed that given a sufficiently high rate of CTLs or helper T cells infiltration responded with tumor elimination. In addition, the importance of optimizing large M1:M2 ratios verses large/small numbers of tumor-infiltrating macrophages on long term patient survival were necessary in improving breast cancer therapies. These observations highlighted the importance of more studies to better understand and improve breast cancer morphology and immunity through immunotherapy.

SS1.1	Friday	Math Success for STEM Majors: Active Learning Strategies
	2:00 p.m.	and Engineering Contexts
Holly Anthony		Tennessee Tech University
The Math Success for STEM Majors (2010–16) project (NSF STEP) was designed to increase the		

The Math Success for STEM Majors (2010–16) project (NSF STEP) was designed to increase the number of STEM graduates at Tennessee Tech University by pursuing six main strategies based in education research. The two strategies relevant for this paper were: (1) incorporating active learning in the redesign of precalculus course and (2) integrating the STEM disciplines through context-driven mathematics applications within an "introduction to university life" course for entering STEM freshmen. This paper describes the active learning strategies/modules that were designed and implemented by interdisciplinary teams of engineers, educators, mathematicians, and physics researchers in these redesign efforts. The strategies/modules have proven effective at motivating and retaining STEM majors at TTU and are transferable to other courses/institutions. Engineering educators can adapt/modify these for use in their respective contexts/settings.

CP3.5	Friday	Toward an Understanding of Skewed-Top Corridors	
	3:20 p.m.		
Shaun Ault		Valdosta State University	
Consider lattice path	in the plane startin	g at the point (0, 1) that remain strictly above the x-axis,	
below a line of positive slope in the first quadrant, and whose allowable moves are up-right and			
down-right. We say	down-right. We say that such lattice paths exist within a skewed-top corridor. The number such		
paths ending at each point within the skewed-top corridor may be arranged into an array. We have			
found that the diagonal sequences within a dualized version of this array exhibit a predictable pattern			
in which certain subsequences have degree given by an explicit formula. The formulas for			
starting/ending points of each subsequence and degree depend only on the parameters of the			
skewed-top corridor and not the values of the corridor numbers themselves.			

DS.2	Friday	Is That a Cylinder or a Moebius Band? Seven Ways to See
	10:00 a.m.	the Difference
Tom Banchoff		Brown University
using ideas from calco polyhedral surfaces. and a new characteri	Tom BanchoffBrown UniversityThis talk will discuss seven different ways of seeing the difference between these two strips of paper, using ideas from calculus of one and more variables and elementary geometry of smooth and polyhedral surfaces. Criteria include fold edges of projections, self-intersection curves of surfaces, and a new characterization involving inflection triangles of polyhedral strips. The talk will be accompanied by models and computer graphics illustrations.	

CP8.1	Saturday	How the study of complex functions produced coloring	
	10:00 a.m.	book and calendar images	
Julie Barnes		Western Carolina University	
Julia sets of complex p	polynomials are the v	vell-known sets of points where the functions are bounded	
points bounded in the direction under iterat imaginary part of iterat the functions behind artistic designs appea contour lines themsel	under iteration. Roughly ten years ago, we began exploring two sets related to Julia sets: the set of points bounded in the real direction under iteration and the set of points bounded in the imaginary direction under iteration. This led us to look at the surfaces obtained by the real part and the imaginary part of iterated complex rational functions. To better analyze the dynamical properties of the functions behind these surfaces, we started generating the associated contour plots. Stunning artistic designs appeared. This has led us back to the mathematics to learn more about what the contour lines themselves indicate, and what properties are necessary to produce more intricate designs from contours. We end this presentation by discussing how this research turned into a		

UT4.1	Saturday	Recognizing Ant Colonies through Graph Invariants	
	10:00 a.m.		
Katherine Barrs		Georgia Southern University, Department of Mathematical	
		Sciences and Department of Biology	
Chemical graph theor	ry is a quickly growin	g interdisciplinary field involving the graphical analysis of	
chemical compounds	through molecular s	structure. Chemical indices are one of the main tenets of	
chemical graph theor	y and are a way of d	escribing chemical structures. Chemical indices assign a	
numerical value to a	numerical value to a graph structure which often correlates with the chemical's properties. In this		
study, we propose th	e development of a	chemical index to predict the behavioral response in a	
biological system. Arg	biological system. Argentine Ants are a globally invasive species that displaces native species and		
facilitates agricultura	facilitates agricultural pests. It is known that colony aggression is related to unique chemical		
blends/profiles amon	blends/profiles among colonies. The cuticular hydrocarbon (CHC) profiles of certain colonies contain		
over 70 chemicals, bu	over 70 chemicals, but it is unclear which components of this profile are most important for		
recognition. Using previously collected data, we plan to analyze the known chemical components of			
CHC profiles. For this purpose, we will define a chemical index to apply to chemical structures to			
predict colony recognition in previously untested colonies. Overall, we expect our finding to			
contribute to better understanding of the differences between colonies and may be key to stopping			
the spread of these highly invasive insects.			

UT5.5	Saturday	Matrices in the Hosoya Triangle
	11:20 a.m.	
Matthew Blair		The Citadel
within this triangle ar this talk, we discuss p polynomial, determir	e of rank one (produ properties and the be pants, and their conn	roducts of two Fibonacci numbers is Hosoya. The matrices ct of two vectors; located on the sides of the triangle). In haviors of the eigenvalues, eigenvectors, characteristic ection with graph theory. The non-zero eigenvalue is a ers. In addition, these matrices are diagonalizable where

the entries of the eigenvectors are points within the Hosoya Triangle. The components of the graphs (when matrices are seen mod 2) are complete graphs with loops and isolated vertices.

SS1.2	Friday	Critiquing Peers' Arguments: Learning in an Introduction to	
	2:20 p.m.	Proof Course	
Sarah Bleiler-Baxter		Middle Tennessee State University	
Introductory proof co	oncepts are frequentl	y taught through instructor demonstration, followed by	
student replication o	f form and represent	ation to similar problems. When students learn about proof	
primarily through see	eing a "polished" com	pleted proof, they may miss opportunities to make sense of	
why a particular mod	e of argumentation (e.g., direct or indirect proof) is appropriate, how a particular	
mode of argument re	mode of argument representation (e.g., visual or symbolic) most clearly communicates a		
mathematical idea, o	mathematical idea, or when a proof can be considered complete. The purpose of this presentation is		
to share the design of my introduction to proofs course, where evaluating student arguments server			
as the primary cataly	as the primary catalyst for engaging students in making sense of some of these essential proof-writir		
concepts. Student wo	concepts. Student work was collected before each class session and used to inform the design of		
subsequent class activities. We worked to establish a communal understanding of what counts as			
proof. Based on this evolving understanding, students actively engaged in evaluating their peers'			
arguments, which in turn encouraged them to take a critical stance toward their own proof writing		m to take a critical stance toward their own proof writing.	
In this presentation, I share student work and describe class activities that promoted students'		and describe class activities that promoted students'	
learning of proof.			

SS11.5	Saturday	Mathematics Immersion at UNG	
	11:20 a.m.		
Karen Briggs		University of North Georgia	
In this talk, we will di	scuss our pilot study	of the Mathematics Immersion Project at the University of	
North Georgia. To pa	rticipate in this proje	ct, Immersion students were required to be concurrently	
enrolled in four bund	enrolled in four bundled courses: Introduction to Proofs, Abstract Algebra, Linear Algebra, and		
Probability and Statis	Probability and Statistics. The common enrollment not only allowed flexibility in teaching but also the		
ability to focus on cro	ability to focus on cross-cutting topics and connections between the courses that would be difficult to		
include in a stand-alone course. Moreover, we found that integrating topics addressing three or more			
courses at once actually fostered improved acquisition of conceptual understanding in all the courses.			
In our experience, we found that the intensive approach provided unique opportunities to improve			
learning outcomes fo	learning outcomes for undergraduate mathematics majors and supported the transition-to-proofs		
better than traditional stand-alone courses.			

UT3.5	Friday 3:20 p.m.	How Often is the Conclusion of Euclid's Lemma True?
Steven W. Buchanan		Tennessee Tech University

Euclid's lemma is one of the oldest results in number theory, and it describes a fundamental property of prime numbers. The lemma says that if a product of two positive integers is divisible by a prime number, then one of the two integers must itself be divisible by the prime. A recent paper by Adrian Dudek calculates the probability of the lemma being true when applied to three randomly chosen positive integers. Specifically, Dudek finds that the probability is asymptotic to $\pi^2/\log(N)$, where N is the upper bound on the dividend. We develop an asymptotic answer for the more general question: how often does the lemma hold if the product of two randomly chosen positive integers is replaced by a product of an arbitrary, but fixed, number of positive integers?

CP4.5	Friday	Gallai-Ramsey Numbers for Hypergraphs
	3:20 p.m.	
Mark Budden		Western Carolina University
every <i>t</i> -coloring of the some $i \in \{1, 2,, t\}$. The	e edges in K_p that avenues that will focus on h	$G_{2,,}G_t$ is defined to be the least natural number p such that olds rainbow triangles contains a copy of G_i in color i for ow this concept can be generalized to the setting of r - me constructions that lead to lower bounds for such

SS2.4	Friday	A Student's Experience in Mathematical Research	
	3:00 p.m.		
Kaitlyn Burk		University of Alabama at Birmingham	
Problems in Business	, Industry, and Gove	rnment often entail more than just completing mathematical	
equations; they ofter	n involve interpreting	g vast amounts of data and discovering trends and anomalies	
within that data. Wh	ile at Lee University	, I participated in two separate projects in the PIC Math	
Program, one in each	Program, one in each of the spring semesters in two consecutive years. My first PIC Math research		
experience involved working on a problem given to our class by National Securities Technologies. V			
improved upon the analysis methods used in their Broadband Laser Ranging diagnostic. In my second			
PIC Math research ex	PIC Math research experience, our task was to assist Good Grit magazine with ways to increase their		
profits through sales and subscriptions. We analyzed geographical data for their typical subscriber,			
and recommended methods for determining and eliminating low-selling vendors.			
Both experiences involved working with large amounts of data and applying problem solving and		arge amounts of data and applying problem solving and	
communication skills to complete the tasks at hand.			

CP6.6	Saturday	Transitioning to Open-Source Materials in a General
	11:40 a.m.	Education Mathematics Course
Philip T. Carroll		Mars Hill University
economic challenge f delivery systems can	or students in moder provide a financial be es. In this talk, we de	ooks and other course materials presents a substantial on higher education. Utilizing open source texts and content enefit for students or, in some cases, educational scribe our experiences in shifting to open source course Mars Hill University.

UT5.4	Saturday	Matrices in a Hosoya-like Triangle
	11:00 a.m.	
Hsin-Yun Ching		
matrices within this t persymmetric and sy Fibonacci and Lucas r	riangle are of rank tw mmetric matrices fou numbers for the eiger ques. We give some c	where the entries are determinants Fibonacci numbers. The wo. In this talk, we discuss properties of square and in this triangle. We present closed formulas in terms of nvalues, eigenvectors, and characteristic polynomials using conjectures on the prime numbers present in the triangle iangle?).

SS1.6	Friday	Engaging students in reflective thinking
	3:40 p.m.	
Marcela Chiorescu		Georgia College
Students often believe that learning mathematics means getting the right answer without reflecting		
too much on their learning. In fall 2018, to encourage reflection in my Precalculus course, I introduced		
assignments that required students to reflect and self-assess their learning of concepts. For most of		
the students this was something new. This talk will be a reflection of my experience with this type of		
pedagogical approach.		

CP9.1	Saturday	Our Jewel: Using Euler's Formula to Make Our	
	10:00 a.m.	Mathematical Lives Slightly Easier	
Jonathan Matthew Clark		University of Tennessee, Knoxville	
College mathematics	students who are no	t exposed to complex numbers in high school may not be	
aware of their utility	aware of their utility until they take more advanced courses such as differential equations. In		
particular, one of the	particular, one of the central results of complex analysis relates the imaginary exponential function to		
the two fundamenta	the two fundamental trigonometric functions. The significance of Euler's formula cannot be		
overstated. In this ta	overstated. In this talk, we'll demonstrate how this jewel of mathematics trivializes trigonometric		
identities, simplifies	identities, simplifies trigonometric integrals, and forms a foundational pillar for the field of differentia		
equations. We'll also	equations. We'll also provide several concrete examples of how Euler's formula is used in		
mathematics graduate work. Thus, this talk will function as an argument for far more inclusion of			
complex numbers, including Euler's formula, into the curricula of both high school and college			
mathematics classrooms.			

UT1.5	Friday 3:20 p.m.	$G \Box K_n$ radio graceful for certain G
Samantha Clayton		University of Tennessee Martin

Within the graph labeling field of radio labeling, a significant and sought-after example is called a radio graceful graph. A graph is radio graceful if there exists an ordering $x_1, x_2, ..., x_m$ of its vertices such that $d(x_i, x_j) \ge \text{diam}(G) - |i - j| + 1$ for all distinct i and j. Many of the results that prove the existence of infinite families of radio graceful graphs use a Cartesian product with a complete graph K_n . We are expanding upon those results by determining sufficient conditions for a graph G such that $G \square K_n$ is radio graceful.

UP1.2	Saturday	Modeling Changes in Atmospheric Carbon Dioxide
	10:10 a.m.	
Elizabeth Compton		LaGrange College
artificial sources and	sinks. For this poster of atmospheric carbo	e Earth's atmosphere is continually in flux with natural and r, a known model will be implemented that quantifies the n dioxide concentrations. This model is then compared to Observatory.

CP3.2	Friday	Leibniz algebras with low dimensional maximal Lie
	2:20 p.m.	quotients
William J. Cook		Appalachian State University
Leibniz algebras generalize Lie algebras in the same kind of way that non-commutative rings		
generalize commutative rings. In this talk, we will look at the definition of Lie and Leibniz algebras.		
Then we will consider cyclic Leibniz algebras. These give us the simplest examples of (non-Lie) Leibniz		
algebras. After discussing the construction and classification of cyclic Leibniz algebras, we will explore		
two families of non-cyclic Leibniz algebras.		

SS10.4	Saturday	Solution to AMM Problem 12008	
	11:00 a.m.		
Benjamin Cook		Nipissing University	
We partially solve p	roblem 12008 from A	American Mathematical Monthly 124, December 2017. The	
problem, proposed	by P. Kórus of the Un	iversity of Szeged, is as follows: You hold in your hand a deck	
of n cards, numbere	of n cards, numbered 1 to n from top to bottom. Shuffle them as follows. Put the top card in the deck		
on the bottom and t	on the bottom and the second card on the table. Repeat this step until all the cards are on the table.		
For which n does ca	For which n does card number 1 end up at the top of the deck on the table? Shuffle the deck a second		
time in the same wa	time in the same way. For which n does card number 1 end up at the top of the cards on the table?		
Shuffle the deck a third time in the same way. For which n does card number 1 end up at the top of			
the cards on the table? For which n does this shuffle amount to a permutation consisting of a single			
cycle?			

UT2.3	Friday	Theoretical Notions of Ecological Stability and Their
	2:40 p.m.	Relation to Temporal Variability

Chace CovingtonFrancis Marion UniversityEcological stability describes how populations of species in an ecosystem behave after a disturbance
and can be measured by empirically and theoretically. Our experiment uses a first-order multivariate
autoregressive model framework to explore the possible relationships between empirical and
theoretical measures of ecological stability and the possible relationships between different
theoretical measures of ecological stability. The empirical measures of stability included in this study
are the average population coefficient of variation, the weighted average population coefficient of
variation, and the community coefficient of variation. All theoretical measures of stability included
are derived from a theoretical community matrix and include asymptotic resilience, initial resilience
and reactivity, and intrinsic stochastic invariability. We find no evidence for any relationship between
empirical and theoretical measures of ecological stability. This result is in agreement with previous
experimental research by Downing, Jackson, and Plunket. However, we do observe clear
relationships between different theoretical measures of ecological stability. We formalize these
relationships with inequalities similar to those derived by Arnoldi et al. for continuous models.

UT6.2	Saturday 10:20 a.m.	A Combinatorial Approach to Euchre
Brent Crane		
A description of the game of Euchre will be presented including all relevant terms, and the goals of such research. It will address the combinatorial problems ingrained within this examination and the adaptation of such problems to the game itself.		

SS10.2	Saturday	N Disks Walk onto a Peg	
	10:20 a.m.		
Katherine Craven		Lenoir-Rhyne University	
The Towers of Hanoi	The Towers of Hanoi is a classic puzzle that involves moving disks from one peg to another, according		
to certain rules. The p	to certain rules. The player can only move one disk at a time and can never place a bigger disk on top		
of a smaller one. In this talk, I will discuss the original puzzle and then describe my work on a related			
puzzle, where the pegs are arranged in a triangle and disks can only be moved in a fixed direction			
between adjacent pegs. I will relate my results on how many moves are needed to solve this puzzle, in			
the form of both recursive and closed formulas.			

UP1.3	Saturday	Water Quality of Rivers and Related Applied Mathematical
	10:10 a.m.	Projects
Alicia Crewey		Georgia Gwinnett College
In this research we present a classical coupled differential equations mathematical model for river pollution. The development of the model is studied starting with a single water quality component $C(x, t)$. Further, the interaction between a pollutant $P(x, t)$ and dissolved oxygen $Q(x, t)$ is shown, modeling the diffusion, advection and the reaction between them.		
Steady state solutions of simplified models as well as the general coupled system of differential equations are shown. For the latter, closed form formulas can be obtained for different components: the velocity of the stream, dissolved oxygen levels etc. They are used to compute values that are		

compared against results obtained by implementing other models. Lastly, changes of the model in the part of the differential equation that is responsible for the reactions between the studied components are implemented and the effect of those changes to the model and the computed results is studied.

UT2.2	Friday	Water Quality of Rivers and Related Applied Mathematical	
	2:20 p.m.	Projects	
Alicia Crewey		Georgia Gwinnett College	
In this research we p	resent a classical cou	pled differential equations mathematical model for river	
pollution. The develo	pment of the model	is studied starting with a single water quality component	
C(x, t). Further, the ir	C(x, t). Further, the interaction between a pollutant P(x, t) and dissolved oxygen Q(x, t) is shown,		
modeling the diffusio	modeling the diffusion, advection and the reaction between them. Steady state solutions of simplified		
models as well as the	models as well as the general coupled system of differential equations are shown. For the latter,		
closed form formulas	closed form formulas can be obtained for different components: the velocity of the stream, dissolve		
oxygen levels etc. They are used to compute values that are compared against results obtained by			
implementing other models. Lastly, changes of the model in the part of the differential equation that			
is responsible for the reactions between the studied components are implemented and the effe		he studied components are implemented and the effect of	
those changes to the model and the computed results is studied.			

SS9.3	Saturday	My Journey from Mathematics to Materials Analyst
	10:40 a.m.	
Joshua Crumbliss		
This presentation will focus on my career journey using mathematics in a non-academic field,		
specifically my transition from a career in logistics into analytics. I will cover multiple projects that		
have utilized my mathematics background, both in my previous position and in my current career as a		
Materials Analyst. I will also go over skills that will make students more marketable for positions in		
this field, as well as best practices for getting into this type of position.		

UP1.4	Saturday	Continuous Frames and the Discretization Problem	
	10:10 a.m.		
Biraj Dahal		Clemson University	
This poster presents	an introduction to co	ntinuous frames and the discretization problem. A frame is	
a generalization of a	a generalization of a basis in an inner product space that may be linearly dependent. Frames enjoy		
nice properties that are useful in signal processing and error recovery. In infinite dimensional Hilbert			
spaces, many natural frames are continuous, which makes them difficult to work with in practical			
applications. It was an open problem for a long time whether it is always possible to sample a discrete			
frame from a continuous frame and maintain the desired useful properties. A very recent result of			
Freeman and Speegle claims that this is always the case (under some very mild assumptions). Their		ways the case (under some very mild assumptions). Their	
proof is closely connected to the recent resolution of the Kadison-Singer and Fechtinger conjectures			

UT5.3	Saturday	Unstacking Tortoise Shells with Math: Factoring	
	10:40 a.m.	Multivariate Polynomials in the Tropical Semiring	
Davis Deaton		Belmont University	
The real numbers end	dowed with the opera	ations of min and + form an idempotent semiring referred	
to as the Tropical Ser	to as the Tropical Semiring. Factorizations of the multivariate polynomials over this semiring are not		
unique. Our goal is to	provide an algorithn	n to produce all the factorizations of any given multivariate	
tropical polynomial.	tropical polynomial. To do so, we associate each polynomial with a polyhedral complex such that		
multiplication of the	multiplication of the polynomials corresponds to Minkowski addition of the complexes. We use a dual		
complex to describe	complex to describe each factor as a polyhedral complex satisfying a certain zero tension condition.		
This condition allows us to frame the irreducible factors as the Hilbert basis of a system of			
Diophantine linear equalities, which can be computed using known algorithms. These irreducible			
factors are then easily stitched together to form all possible factorizations.			

UT1.3	Friday	Deleting Edges from Complete Graphs to Destroy the
	2:40 p.m.	Ramsey Property
Elijah Dejonge		Western Carolina University
the edges of a compl	ete graph on <i>n</i> vertic er of edges that mus	tral number n such that every two-coloring (red and blue) of es, K_n , must contain a red copy of G or a blue copy of H . We t be removed from such colorings of K_n in order to destroy graphs.

CP2.3	Friday	Similarity Solutions to a Class of Mixed Convection Flows
	2:40 p.m.	
Anilkumar Devarapu		Albany State University
flow in the stagnation nonlinear coupled pa and concentration fie equations. Numerica	n point region. With t rtial differential equa eld) have been reduce I solution of the resu	solution of the unsteady mixed convection boundary layer the help of a set of suitable similarity transformations, the ations governing select phenomena (such as flow, thermal ed to a set of nonlinear coupled ordinary differential ltant system of nonlinear ordinary differential equations is scheme along with quasilinearisation technique.

UT5.2	Saturday	Generalized Commutator Probability for Group Elements	
	10:20 a.m.		
Dalen T. Dockery		Tennessee Tech University	
In this project, we loo	In this project, we look at a probabilistic question in group theory: let G be a group with H a subgroup		
of G, and define the commutator of two group elements x and y to be [x,y]=xyx-1y-1. We analyze the			
probability that this commutator lies in H for an arbitrary choice of x and y. Additionally, we provide			
special cases of this probability for certain types of groups G and subgroups H, as well as probabilistic			
bounds for this condition. We conclude by looking at a few interesting questions regarding this			
probability, particularly its extremes under various conditions.			

СР7.3	Saturday	Capturing Persistent Homotopic Information	
	10:40 a.m.		
Ivan Dungan Francis Marion University			
persistent homotopy an immediate succes	With the popularity of persistent homology and its applications, there has been growing interest in a persistent homotopy theory. Of course, there are the immediate computational difficulties to make it an immediate success like the prior. We will focus on the differences and identify how to capture some homotopic information that may advance current applications of persistent homology.		

SS8.1	Saturday	An Alternative Calculus Sequencing for increasing Math	
	10:00 a.m.	Majors	
Ivan Dungan		Francis Marion University	
We will discuss a calc	We will discuss a calculus sequencing where an introductory ordinary differential equations course is		
introduced immediat	introduced immediately after a single variable calculus course. This is a slight variation of the usual		
sequencing of calculus courses, but we propose that the benefits are great especially when modeling			
real-world phenomena is integrated into the course. We will highlight these benefits which give			
students an early understanding of the power of mathematics in the academic and professional world			
with hope to create more math majors and in general, more STEM graduates.			

UT6.6	Saturday	Nevanlinna-Pick Interpolation on Certain Subalgebras of
	11:40 a.m.	Bounded Analytic Functions
Jeremiah Dunivin		Coastal Carolina University
Let $\emptyset \neq K \subseteq \mathbb{Z}_+$ and define $H_K^{\infty}(\mathbb{D}) = \{ f \in H^{\infty}(\mathbb{D}) : f^{(k)}(0) = 0 \text{ for all } k \in K \}.$		
It is not necessary that all the subsets K form an algebra $H_K^{\infty}(\mathbb{D})$; for example, take the set $K = \{2\}$.		
We consider those sets K for which $H_{\infty}^{K}(\mathbb{D})$ is an algebra under the usual product of functions. In this		
paper, we extend the Nevanllina-Pick interpolation theorem to $H^{\infty}_{K}(\mathbb{D})$.		

UT1.4	Friday	On Game Chromatic Number: Mycielskians	
	3:00 p.m.		
Hannah Elser		Winthrop University	
A graph is a colled	ction of vertices and	dedges. A proper coloring of a graph is an assignment of color to	
each vertex so that	at no edge has the s	same color on both ends. The chromatic number of a graph is the	
least amount of c	least amount of colors that must be used in order for the graph to have a proper coloring. The		
Mycielski constru	Mycielski construction on a graph results in a new graph which requires one additional color to		
properly color.			
Shifting gears, consider the following game played by Alice and Bob on a graph. The players will take			
turns (with Alice going first) coloring the vertices from a common color set so that no edge has its two			
vertices colored the same color (i.e. after each player's turn, the partial coloring is proper). Alice wins			
if the entire graph	if the entire graph is colored and Bob wins otherwise. Thus the question: given a graph G and a color		
set C, who has a winning strategy (i.e. can win independently of the other player's moves)? Our work			

focused on finding a relationship between the game chromatic number of a graph and that of its Mycielskian.

SS4.2	Friday	NFL Rule Changes: Have they Really Made an Impact for	
	2:20 p.m.	the Future of the Game?	
Sarah Fleischer		University of North Carolina Asheville	
In recent years there	In recent years there has been growing documentation that continuous hits to the head can lead to		
chronic traumatic en	chronic traumatic encephalopathy (CTE). Athletes playing contact sports such as football have an		
increased risk of deve	increased risk of developing CTE due to repeated blows to the head during practice and game play.		
As a result, the NFL h	As a result, the NFL has regularly made adjustments to the rules to increase player safety, especially		
attempting to reduce concussions in players during game play. During this talk we will explore the			
relationship between penalties and concussions and consider if rule changes are having an impact of			
reducing head injuries.			

UP1.5	Saturday	What's a DRACKN?	
	10:10 a.m.		
Alex Foster		Coastal Carolina University	
Equiangular Tight Fra	Equiangular Tight Frames, or ETFs, are sets of vectors that correspond to complex equiangular lines,		
which have sought after applications in various digital communication and coding theory contexts.			
This sparks an ongoing search to identify and classify ETFs, and a common strategy to obtain classes of			
ETFs is to utilize properties of certain simple graphs. This motivates the study of Distance Regular			
Antipodal Covers of Kn, or DRACKNs, which maintain properties that can be used to construct ETFs.			
Here we elaborate on the properties of these graphs and how they can be used to construct ETFs.			

UT2.4	Friday	Modeling Protection Strategies Against Chikungunya Virus	
	3:00 p.m.	on Reunion Island	
Alex Foster		Coastal Carolina University	
Chikungunya virus is	a mosquito-borne vir	us that is often accompanied by chronic arthritis. The	
disease was relativel	disease was relatively unstudied until an outbreak on Reunion Island in 2004 infected nearly a third of		
the population. This	the population. This led to the creation of systems of differential equations to model transmission on		
this island. Here we look at preventing transmission with the use of mosquito repellent, and we			
construct a game-the	construct a game-theoretic model where individuals choose how often they spray themselves with		
repellent. We find that as the cost of insect repellent decreases, compared to the cost of infection,			
the strategies of rational individuals results in a reduction of infectivity of the disease, but does not		s in a reduction of infectivity of the disease, but does not	
eliminate it.			

UT3.1	Friday 2:00 p.m.	Generalizing Random Fibonacci Sequences
Alex Foster		Coastal Carolina University

Ever since the Four Color Theorem was proved in 1976, proofs using computers have become increasingly influential and controversial. In 1999, Viswanath determined a convergent nth root for random Fibonacci sequences (1.13198824...), but his technique required a computation using floating-point arithmetic. Here we present a generalization of these sequences and an interesting observation for the apparent convergence of the nth root for these generalizations, the proof of which we leave as an open question for the audience to explore.

CP4.3	Friday	Neighborhood-Prime Labelings of Graphs
	2:40 p.m.	
Brad Fox		Austin Peay State University
vertices are labeled v degree greater than 1. In this talk, we wil labeling, demonstrat	vith the integers {1, 2 1, the gcd of the set of 1 discuss evidence to ing labelings for grap labelings will be exar	of order n is a variation of a prime labeling in which the $\{1,, n\}$ so that the following is true. For each vertex v with of labels assigned to the vertices in the neighborhood of v is ward a conjecture that all trees have a neighborhood-prime hs such as caterpillars, spiders, and firecrackers. Finally, nined for Hamiltonian graphs including generalized

SS8.2	Saturday	Pedagogical Pitfalls and Promises of a QLR Project	
	10:20 a.m.		
Ryan Fox		Belmont University	
In developing a releva	In developing a relevant, real-world task for a introductory Quantitative Literacy and Reasoning		
course, I must update the same task frequently to meet the changing context of the task. In my talk, I			
want to discuss the original task, computing income taxes for hypothetical wage earners, and the			
changing contexts, as described in news articles of the changing rules regarding these taxes. I hope to			
get feedback from audience members regarding modifications of the task that support students'			
mathematical growth while maintaining a relevancy to their post-academic interests.			

SS1.4	Friday	Effectiveness of metacognitive study skills intervention in
	3:00 p.m.	first-year math courses
Jenny Fuselier		High Point University
students who perform on their first test, we an hour, and focused student's study habit results in Chemistry of	m poorly at an early s conducted a study s on using metacognit s. Similar work has b courses. We will disc	ormance in math courses is through interventions with stage of the course. For students scoring an 80% or below kills intervention workshop. The workshop lasted less than tive techniques (thinking about thinking) to improve been done by Saundra Yancey McGuire, with impressive uss an outline of the workshop and preliminary results from ly improved students' performance in their courses.

SS10.5

11:20 a.m.			
Edward Fuselier	High Point University		
In this talk we mathematically explore the	summer camp activity "Enemy-Protector." Participants of		
Enemy-Protector try to arrange themselve	Enemy-Protector try to arrange themselves according to "enemy" and "protector" assignments, and		
these assignments can lead to interesting behavior as the players move. In an effort to better			
understand the dynamics involved, we modeled Enemy-Protector as a dynamical system in MATLAB.			
We will share several observations from our simulations and investigate some of Enemy-Protector's			
underlying mathematical structures.			

SS3.3	Friday	Symmetric Arrangements in SET Space
	2:40 p.m.	
Nathan Gaby		Berry College
and shape. Gam cards match, or a algebra of $Z_3 \times Z_3$ extensively. In the We will use the H arrangements of	eplay is focused on f all three cards differ. $Z_3 \times Z_3 \times Z_3$. The nat his presentation we v Hamming distance be	1 cards, each of which have 4 attributes: number, color, shading inding collections of 3 cards so that in each attribute all three This gives the SET deck a 4D geometric structure based on the sure of affine spaces in this geometry has been studied will consider the nature of nonaffine sets in the geometry of SET. etween cards to classify the different possible symmetric e. Additionally, we will discuss operations on the SET plane that

UT3.2	Friday	The Fourier Transform and Signal Processing	
	2:20 p.m.		
Cain Gantt		Georgia College	
In this project, we ex	plore the Fourier trai	nsform and its applications to signal processing. We begin	
from the definitions of	from the definitions of the space of functions under consideration and several of its orthonormal		
bases, then summarize the Fourier transform and its properties. After that, we discuss the			
Convolution Theorem and its relationship to the physics behind problems in signal processing. Finally,			
we investigate the multidimensional Fourier transform; in particular, we consider the 2-dimensional			
transform and its use in image processing and other problems. We include an example of a typical			
image processing task and demonstrate how the Convolution Theorem is applied to obtain a solution.			

CP2.6	Friday	Inverse problems related to the Steiner-Wiener indices
	3:40 p.m.	
Matthew Gentry		
induced graph that c vertices and take the chemical graph theor	ontains these vertices sum, it is called the S ry. In this presentatio	een multiple vertices is the minimum number of edges in an s. When we consider such distances between all subsets of k Steiner k-Wiener index and has important applications in n we consider the inverse problems related to the Steiner rs is there a graph with Steiner Wiener index of that value?

SS2.3	Friday	PIC Math and Beyond
	2:40 p.m.	
Debra Gladden Lee University		Lee University
The authors are both former recipients of PIC Math grants. The PIC Math program prepares students		
for careers in industry via engaging them in problems that come directly from industry. We will		
discuss our experiences with the program and offer a model of embedding the substance of the		
program into curriculum after the grant has expired.		

UP1.6	Saturday	Statistical Models for Predicting Single-Game Win-		
	10:10 a.m.	Expectation for NHL Teams		
Mira Grcevich		Belmont University		
Predictive analytics n	nodels function to ma	ake sense of data, clarify relationships, and estimate future		
behaviors; they give	logical and accessible	projections of otherwise unknown events, and can be		
applied in a wide ran	ge of contexts — part	ticularly, in our case, NHL hockey. The movement to		
integrate statistics w	ith traditional evaluat	tions of sport performance began nearly fifty years ago, yet		
"advanced stats" are	"advanced stats" are considered an emergent and polarizing element of modern ice hockey.			
Furthermore, hockey	Furthermore, hockey is the most unpredictable of the four major North American sports, the			
outcomes of single ga	outcomes of single games are more sensitive to random chance than the outcomes of entire seasons,			
and the metrics/mod	and the metrics/models created by those leading the advanced stats movement are often indigestible			
to the casual fan. With this project, I aim to provide a clear explanation of how analytics can be used				
to make inferences about something as unpredictable as hockey by creating a model to predict win				
expectation ("Win" or "Loss"); one NHL team's likelihood of winning a specific single-game matchup				
against another NHL team.				

UT4.4	Saturday	A Mathematical Model for Controlling the Spread of	
	11:00 a.m.	Cholera through Disinfection, Vaccination, and Quarantine	
Olivia Greathouse		Winthrop University	
Cholera is a water-bo	Cholera is a water-borne gastrointestinal disease that poses major health concerns and can be fatal.		
we present a mathen control strategies of the basic reproductiv based on the value of	natical model for the disinfection, vaccinat re ratio, R_0, and pro- f R_0. We conclude w	ith proper treatment and prevention methods. In this talk, spread of cholera throughout a population, with basic ion, and quarantine. For our proposed model, we calculate ve global stability of the disease-free and endemic equilibria vith numerical simulations and a discussion of the che spread of cholera.	

UT1.1	Friday	The Asymmetric Index of a Graph and Families of
	2:00 p.m.	Asymmetric Graphs
Adam Gregory Western Carolina University		Western Carolina University
A graph G is asymmetric if its automorphism group of vertices is trivial. Asymmetric graphs were		
introduced by Erdős and Rényi in 1963. For a sufficient graph G we can remove some r number of		
edges and/or add some s number of edges to G in a way that yields an asymmetric graph. We define		
the asymmetric index of the graph G, denoted ai(G), to be the minimum of r+s so that the resulting		

graph is asymmetric. We present the asymmetric index of various connected and disconnected graphs and establish the existence of k-regular asymmetric Hamiltonian graphs for all k > 2.

SS2.4	Friday	Chess Master Delannoy and the Switching Lattice Paths	
	3:00 p.m.		
William Griffiths		Kennesaw State University	
In the late 19th centu	ury, Henri-Auguste De	elannoy corresponded with Lucas on a number of	
recreational mathematics problems. Delannoy solved a number of these problems with the			
chessboard. He introduced the Delannoy numbers, the number of paths from the origin to (m,n)			
using only the steps (1,0), (0,1), or (1,1). These were called 'Queen's Walks', as they represent ways in			
which the Queen might move. We generalize these 'walks', or lattice paths, discovering an infinite			
collection of sequences with intriguing connections. Proofs of Identities amongst this collection are			
described by bijections even the novice player can master!			

CP5.5	Friday	To infinity and beyond	
	3:20 p.m.		
Pawel Grzegrzolka		the University of Tennessee	
In this talk, we will pr	In this talk, we will provide an introduction to the theory of coarse proximity spaces. We will start		
with recalling what it means for two sets to be "close." Then, we will discuss what it means for two			
sets to be "coarsely" (or "large-scale") close. After showing a few examples of spaces capturing coarse			
closeness (i.e., coarse proximity spaces), we will present selected recent results regarding coarse			
proximities. In particular, we will show how coarse proximities capture "closeness at infinity." No			
prior knowledge of coarse proximities will be assumed. This is joint work with Jeremy Siegert.			

UP1.7	Saturday	Cayley Graphs on Billiard Surfaces
	10:10 a.m.	
Asia Grzegrzolka	Asia Grzegrzolka Lee University	
graphs of the symme	try groups can be dra	idean symmetry groups that are dihedral groups. Cayley wn on the surfaces in a natural way. We explore the graphs of the symmetry groups and the genera of the

UT5.6	Saturday	On Covers of Dihedral 2-Groups by Powerful Subgroups	
	11:40 a.m.		
Luke Guatelli		Western Carolina University	
A finite p-group G is a	A finite p-group G is called powerful if either p is odd and $[G,G] \subseteq Gp$ or p=2 and $[G,G] \subseteq G4$. A cover		
for a group is a collection of subgroups whose union is equal to the entire group. We will discuss			
covers of p-groups by powerful subgroups. The size of the smallest cover of a p-group by powerful			
subgroups is called the powerful subgroup covering number. Our focus in this presentation is to			
determine the powerful subgroup covering number of the Dihedral 2-groups.			

UT4.3	Saturday	Mathematical models for Decapentaplegic (Dpp) scaling	
	10:40 a.m.	and pattern formation in the common fruit fly	
Noah Hallman		Georgia Southern University	
Members of the sam	e or closely related s	pecies can vary substantially in size, yet the proportions	
within and between	tissues are precisely	kept. Drosophila melanogaster, often referred to as the	
common fruit fly, is a	widely-used model	organism in biology. Many basic biological, physiological,	
and neurological pro	perties are conserved	d between mammals and Drosophila, and nearly 75% of	
human disease-causi	ng genes are believe	d to have a functional homolog in the common fruit fly.	
Morphogens are sign	Morphogens are signaling molecules secreted from a localized source in tissue that regulate gene		
expression in a conce	expression in a concentration-dependent manner. Decapentaplegic (Dpp) is a morphogen that plays a		
key role in the develo	key role in the development of Drosophila. In particular, growth regulation of the Drosophila wing		
imaginal disc criticall	imaginal disc critically depends on the Dpp concentration gradient. It has been experimentally verified		
that both Dpp concentration and signaling gradients scale with tissue size in the developing			
Drosophila wing imaginal disc. Using mathematical models and computer simulations, we have been			
investigating the pattern formation and scaling of Dpp and its activities in the Drosophila wing			
imaginal disc. In this talk, an introduction to the pattern formation and scaling of Dpp will be given			
and some preliminar	and some preliminary results shown.		

PUB.1	Friday 2 p.m.	Practice, Practice, Practice in Calculus and Statistics
Hawkes Learning		Hawkes Learning

Learn about new calculus and statistics software that ensures practice makes permanent through unlimited problem solving.

Customized exercise sets and targeted practice sessions built from 27,858 calculus question variations are now available to improve student comprehension. Discover how software can provide error-specific feedback, recognize alternative equivalent answers, and teach students through annotated step-by-step tutorials.

Find out how the new edition of Discovering Statistics and Data pays homage to modern day's technology-driven data explosion and engages students in the real-world applications of statistics. A free online resource containing more than 30 data sets, 17 chapter projects, 32 data visualization tools, and technology instructions for tools ranging from Excel to R will be shown.

Learn about these new course materials and enter to win an Amazon gift card! Learn about new calculus and statistics software that ensures practice makes permanent through unlimited problem solving.

Customized exercise sets and targeted practice sessions built from 27,858 calculus question variations are now available to improve student comprehension. Discover how software can provide error-specific feedback, recognize alternative equivalent answers, and teach students through annotated step-by-step tutorials.

Find out how the new edition of Discovering Statistics and Data pays homage to modern day's technology-driven data explosion and engages students in the real-world applications of statistics. A

free online resource containing more than 30 data sets, 17 chapter projects, 32 data visualization tools, and technology instructions for tools ranging from Excel to R will be shown.

Learn about these new course materials and enter to win an Amazon gift card!

CP4.4	Friday	Restricted n-color Cyclic Compositions	
	3:00 p.m.		
Elizabeth Hawkins		Georgia Southern University	
Suppose you have a p	pile of colored square	s of fabric. Now, suppose you don't know what colors they	
are or how many the	re are of each color. I	f you arranged the colored square into a straight line of	
some unknown length, how many unique patterns can you make with these colored tiles for each			
length line? Of course the answer depends on what colors you allow, the length of the line, the			
number of parts, and the meaning of unique. For this question unique means they are not cyclic			
equivalent.			
In this talk we will int	In this talk we will introduce the basic concepts related to n-color cyclic compositions and		
enumeration problems which address problems like the one above. We then focus on different			
restrictions one can p	restrictions one can put on the allowed colors and study the properties of the corresponding counting		
sequences.			

SS5.1	Friday	Start – Stop – Continue: A Mid-Semester Course
	2:00 p.m.	Retrospective
Amanda Lake Heath		University of Tennessee
Many universities or o	departments require	students to complete course and instructor evaluations at
student feedback dur environment while it asks that students sug there are two column	ing a course allows this still relevant to the ggest something to store that they must con , students are not sin	loy mid-semester evaluations or reflections. Requesting he opportunity for an instructor to adjust the classroom eir current students. The "Start – Stop - Continue" activity tart, something to stop, and something to continue, but hplete: one regarding "the course" but another regarding hply given a chance to give the course feedback, but also in the course.

CP5.2	Friday	There are continuum-many integer sequences with the
	2:20 p.m.	Zeckendorf property
Curtis Herink		Mercer University
expressed as a sube paraphrased as a subset A of the so if A is infinite the infinite the assoc	im of distinct noncons as the Fibonacci seque et of natural numbers associated sequence iated sequence has th	ndorf property if every positive integer can be uniquely secutive terms of the sequence. Thus Zeckendorf's theorem can nce 1, 2, 3, 5, 8, 13, has the Zeckendorf property. To each we associate a distinct integer sequence in such a way that (i) has the Zeckendorf property, and (ii) if A is both infinite and co- e stronger property that every integer, positive or negative, distinct nonconsecutive terms of the sequence.

UT2.6	Friday	Predicting Lung Cancer Death Rates by County through	
	3:40 p.m.	Demographic Variables	
Jordan G Hoffman		Belmont University	
The onset of lung can	ncer is often considere	ed to be the result of individual lifestyle choices, such as	
smoking. However, lu	ung cancer differentia	Ily affects minorities and individuals of low socioeconomic	
status, suggesting that	at external stressors r	may also contribute to the onset of lung cancer. In 2015, the	
Center for Disease Co	ontrol published Com	munity Health Status Indicators, an extensive database	
recording birth and d	eath rates, risk factor	rs, environmental and demographic data for every county in	
the US. For my capsto	one project in Predict	ive Analytics, I utilized this database to predict lung cancer	
death rates per 100,000 individuals in a county based on the county's demographic makeup and			
occurrence of other chronic disorders. After merging and cleaning the data files, I used R software to			
train a multiple regression linear model. To refine the model, I eliminated variables with minuscule			
correlation coefficien	correlation coefficients to the predictor variable, such as obesity, and added an interaction term		
between race and po	verty. The final predi	ctor variables included percentage of racial minorities in the	
county and poverty le	evel, and small p-valu	es suggest their correlations to lung cancer deaths are	
unlikely to be due to	unlikely to be due to chance. Running the model on test data resulted in an R-squared value of 0.54,		
meaning that the model explains 54% of the variance in lung cancer death rates. While lifestyle			
	factors such as smoking, diet and exercise definitely affect an individual's likelihood to contract lung		
cancer, this model suggests that racial and socioeconomic inequality are structural risk factors for this			
terminal disease.			

UP1.8	Saturday	The Domination Ideal of a Finite Simple Graph
	10:10 a.m.	
Jacob Honeycutt Clemson University		Clemson University
Let G be a finite simple graph with vertex set {v_1,,v_d }. We study G algebraically by introducing its		
domination ideal D_G⊂K[v_1,,v_d] where K is a field. The generators for D_G are S_1,,S_d where		
S_i is the largest substar of G centered at vertex v_i. We prove that the irredundant, irreducible		
decomposition of D_G is determined by the minimal dominating sets of G.		

CP4.6	Friday	A Generalization of a Result of Catlin: 2-Factors in Line
	3:40 p.m.	Graphs
Emily Hynds		Samford University
A 2-factor of a graph G consists of a spanning collection of vertex disjoint cycles. In particular, a		

A 2-factor of a graph *G* consists of a spanning collection of vertex disjoint cycles. In particular, a hamiltonian cycle is an example of a 2-factor consisting of precisely one cycle. Harary and Nash-Williams described graphs with hamiltonian line graphs. Gould and Hynds generalized this result, describing those graphs whose line graphs contain a 2-factor with exactly k ($k \ge 1$) cycles. With this tool, we show that certain properties of a graph *G*, that were formerly shown to imply the hamiltonicity of the line graph, L(G), are actually strong enough to imply that L(G) has a 2-factor with k cycles for $1 \le k \le f(n)$ where *n* is the order of the graph *G*.

SS2.2	Friday	Math in Software Development
	2:20 p.m.	
Bridget Jones		
Finding your first job out of college can be challenging. This presentation will focus on the challenges		
I faced during my job search and how a positive attitude and willingness to try something new helped		
me land a role in software development. I will discuss how math is used in my daily tasks as well as		
discuss how my background in math and doing research as an undergraduate set me up for success as		
a software developer	•	

SS11.1	Saturday	Combining Resubmission with Reflection to Increase
	10:00 a.m.	Understanding
Vicky Klima		Appalachian State University
We are all busy people! Our students are no different and often, due to increased pressures on their		
time, students do not absorb feedback in the way we would hope. In this talk we present methods of		
encouraging students to engage meaningfully with feedback provided both directly by the instructor		
and indirectly through an online homework system. In addition to discussing the nuts and bolts of		
implementing the feedback loop we also discuss student reaction concerning the effectiveness of this		
system.		

UT3.4	Friday	How to Stop a Nazi: Ranked-choice Remixed
	3:00 p.m.	
Matt Knipfer		High Point University
towards promoting n comes limitations and augmentations to Ra	Ranked-choice is an alternative voting method to our current Plurality model, the former trending towards promoting more moderate candidates and third-parties. However, with every voting model comes limitations and inherent features that are favorable in candidates. In this paper, I propose two augmentations to Ranked-choice that have potential to mitigate some of these issues and promote	
candidates with greater mean and median favorability.		

CP5.3	Friday	Partitions with largest part repeated
	2:40 p.m.	
Louis Kolitsch		The University of Tennessee at Martin
In this talk a theorem about partitions where the largest part in the partition is repeated will be		
presented. Results will be looked at both analytically and combinatorially.		

CP7.2	Saturday 10:20 a.m.	Computing Dessins for a Given Branching Pattern
Vijay Jung Kunwar		Albany State University

Branching pattern gives the combinatoric structure of a rational function, it does not tell anything about the existence of the function. For example, there is no rational function for the following branching pattern of order (degree) eight: (2^4) , (2^4) , $(2, 3^2)$. We can use dessins to verify the existence of rational functions for a given branching pattern.

For Riemann spheres (genus 0), there is a one-one correspondence between dessins, permutation triples, and bely imaps of degree n. Basic method to compute dessins of degree n involves the following two components: (i) start from the dessin of degree 1, (ii) add an edge on each successive

step to find dessins of the next degree. This method has a huge growth of $\frac{(n-1)!(n+1)!}{2}$ which makes it

impossible to compute all dessins of degree as small as 12 without imposing additional restrictions or constraints.

In this presentation we will discuss about an efficient way to compute dessins for a given branching pattern using multi-step method. The new approach is very fast and efficient on computing dessins, and thus on proving the existence of belyi maps for a given branching pattern.

SS2.5	Friday	Actuarial Science	
	3:20 p.m.		
Allyse Lamon			
Actuaries use mather	matical concepts and	models to estimate reserves that insurers must keep on	
hand to pay out claim	ns and to set appropr	iate premiums for those insurers' policies. Most actuaries	
generally work either	generally work either in life and health at a firm like MetLife or Blue Cross or in property casualty at a		
firm like Allstate. But	firm like Allstate. But the field is broader than you might expect – I work at Caterpillar's office in		
Nashville where the machinery manufacturer's financial operations are headquartered – and I			
highlight some actuarial career opportunities for graduates with mathematics backgrounds.			
I've worked in the actuarial field for several years and outline the actuarial paths graduates can take,			
the preferred qualifications they will need for an entry-level job after graduation, and the ongoing			
education requirements and advancement opportunities available in the field. Using one of the more			
recent projects I have been working on as an example, I also walk through the interesting, fun, and			
challenging types of t	challenging types of things an actuary may do on a day-to-day basis.		

UP1.9	Saturday	Positive solutions to singular second order boundary value
	10:10 a.m.	problems for dynamic equations
Alex Lancaster University of Tennessee Martin		
We study singular second order boundary value problems with mixed boundary conditions on an		
infinitely discrete time scale. We prove the existence of a positive solution by means of a lower and		
upper solutions method and the Brouwer fixed point theorem, in conjunction with perturbation		
methods used to approximate regular problems.		

SS10.1	Saturday 10:00 a.m.	Geometric phase of an analog clock
Jeffrey Lawson		Western Carolina University

How many times in a day does the minute hand of an analog clock cross the hour hand? What about if we also consider the second hand? Although this is an old puzzler, we will present a solution using the geometric phase. We also show that the center of mass of the system traces out Spirograph-like curves that help to visualize the problem.

CP9.3	Saturday	Data patterns discovery using unsupervised learning
	10:40 a.m.	
Rachel Lewis		Georgia Southern University
Cluster analysis (clustering) is an exploratory data mining task of creating groups (clusters) of similar objects. Clustering is typically a difficult unsupervised learning task: there are many methods and many similarity/dissimilarity measures to choose from and the results typically vary with these methods.		
We use hierarchical clustering on binary data, using a few popular similarity measures to discover interesting information from self-care problems of children with physical and motor disability data. We show how using different similarity measures one can perform automatic classification of such binary data, and, in general, discover outliers and rare occurrences in data.		

SS1.3	Friday	A course redesign of Differential Calculus using adaptive
	2:40 p.m.	learning courseware at an HBCU
Torina Lewis		
performance in found years, we found that W, with about 30% of the concepts at a high redesigned the Calcul determine the effecti (ALEKS) as a corequisi hundred thirty-six stu exposed to the interv the experimental grou control group average	dational STEM course approximately 60% of f the students receive n level in these course lus I course using ada veness of utilizing the ite model in Calculus idents enrolled in fou- rention, while the ren- up earned an average ed 46%. Results also	Acted a comprehensive review and evaluation of student as offered in AY 2014-15 to AY 2016-17. During the three of the students enrolled in these courses earned a C, D, F, or ng a C. The data showed that students were not mastering es. Since Calculus I is the foundation of STEM, we uptive learning courseware. The purpose of the study was to e platform Assessment and LEarning in Knowledge Spaces I to improve mastery of student learning outcomes. One- ur sections of Calculus I. A section of 32 students was naining 104 students formed the control group. Students in e of 64% on the final assessment while students in the indicated that students exposed to the intervention were a 70% or above on the final assessment (52% vs 20%).

SS1.5	Friday	Designing a Corequisite Class to Increase Student Success
	3:20 p.m.	in Calculus I
Elizabeth Lewis UNCG		
This talk discusses our Foundations of Calculus class which is designed to increase undergraduate		
degree efficiency for STEM students by reducing barriers to academic progress through curriculum		
updates and course design. This corequisite course provides supplemental instruction for Calculus I, a		
gateway mathematics course for STEM majors that has a history of low success, causing a significant		

hindrance to timely graduation. Many students (over 40%) who attempt Calculus I never achieve a grade of C or better in their program of study. Even among those who do have success, very few succeed in their first year of study. We discuss design, implementation, successes and challenges and next steps.

SS11.4	Saturday	Steps in Teaching Students to use Excel for Solving
	11:00 a.m.	Quantitative Problems
Robin Lovgren		Belmont University
An outline will be presented to give an organized method for incorporating Excel in the classroom as a		
tool for solving quantitative problems. Should the instructor demonstrate from the front of the class		
or should the exercise be self-guided? There will be a discussion of the role of the instructor and the		
role of the student during this process. A variety of ways to lead the class will be discussed along with		

role of the student during this process. A variety of ways to lead the class will be discussed along with results and a suggested final format. There will also be a discussion of the required mathematical skills and the required spreadsheet skills for the students as the course progresses. After changing to this recommended method, there has been a noticeable increase in the number of students who can correctly use Excel on Problem Sets and who can identify and state the Excel functions properly on a test.

UT2.1	Friday	Introduction to Multiplayer Nash Equilibrium and	
	2:00 p.m.	Applications	
Candace Luong		Georgia Southern University	
From planned trips to	From planned trips to the theater, to the capture of consumer interests, Game Theory lends its utility		
to many aspects of lif	to many aspects of life. By observing its core concepts, such as Nash equilibrium, best response		
functions, and mixed strategy, participants (players) in various scenarios (games) can optimize their			
decision. In this prese	decision. In this presentation, we will discuss these particular examples, and generalize them to cases		
with more players. Moreover, we will use these models to ultimately demonstrate game theory's			
applications in some practical applications. For instance, Investors depend on a certain clairvoyance			
to guide their investment decisions. Through the study of game theory, we can model the			
groundwork for the firm-to-firm interactions that govern their shrewdest investments. In particular,			
3-dimensional "table	3-dimensional "tables" will be constructed, in which we introduce the concept of "sub-equilibrium" to		
help facilitate the dec	cision-making proces	S.	

UP1.10	Saturday	Analyzing Power Usage Data at a Growing Rural University
	10:10 a.m.	
Jonathan Mashburn		Western Carolina University
This project was to determine if an unexpected rise with Western Carolina University's Power Usage		
was due to weather. We fit the data to a model using a variety of regression methods to predict the		
usage. We also used a time series model to predict the future usages.		

 GS1.1
 Friday
 Tales of Success From Mathematical Malpractice

	12:45 p.m.		
Kristen Mazur		Elon University	
Have you ever thoug	ht about the value of	mathematical failure? Errors and failure are inevitable and	
invaluable aspects of	learning mathematic	cs, yet they are often forgotten elements of the research	
process. In math hist	ory lessons we discus	ss Lobachevsky's and Bolyai's discovery of hyperbolic	
geometry while ignor	geometry while ignoring the many erroneous attempts to prove the parallel postulate that inspired		
their work. We celeb	their work. We celebrate Tait's first classification of basic knots but never mention its origination as		
part of a debunked theory of the atomic model. However, mathematicians inherently appreciate tha			
learning from failure leads to long-term success. In this celebration of failure, we discuss moments		access. In this celebration of failure, we discuss moments in	
history in which wrong ideas inspired something right: beautiful new mathematics.			

UP1.11	Saturday	Dynamics of an HIV-1 Virotherapy Model	
	10:10 a.m.		
Mary McBride		Winthrop University	
In this project, we co	In this project, we consider the dynamics of the HIV-1 virus under the effects of viortherapy and an		
immune response. W	immune response. We calculate basic reproductive ratios for the HIV-1 virus and recombinant virus,		
and use these ratios to establish existence and stability criteria for disease-free, single infection, and			
double-infection equilibria. We utilize Lyapunov functions to prove the global asymptotic stability of			
the disease-free and single-infection equilibrium. For the double-infection equilibria, we explore its			
stability through numerical simulations and provide evidence of a Hopf bifurcation. We conclude with			
a discussion on the effects of using a recombinant virus to control HIV-1 cell populations.			

UT4.5	Saturday	Planetary Motion determined by Mary Somerville
	11:20 a.m.	
Sydney McCall		Winthrop University
among the scientific book "Mechanism of "On the differential e	and mathematical c the Heavens." This equations of the mot iscusses how distan	life and work of Mary Somerville. Mary was well-known ommunities. One of her biggest accomplishments was her talk gives an overview of one chapter of this book entitled tion of a system of bodies, subjected to their mutual ces and force are used to estimate the location and

SS5.2	Friday	Using a Flipped Format in Core Mathematics Classes
	2:20 p.m.	
Beth McClanahan		LaGrange College
Algebra courses. Spe ways in which studen style of teaching in th	cifically, we will discu its have responded to ne classroom. Topics	pped classroom format in Elementary Algebra and College uss how a flipped course may be structured, some of the o this format, and some of the unintended benefits of this include the use of videos outside of class, tests/quizzes, gling different levels in the same classroom.

SS4.4	Friday	Humans vs. Zombies: A Phase Plane Analysis Activity
	3:00 p.m.	
Hope McIlwain		Mercer University
game, which reflects Zombies) interact. As which models the int	a larger interest in he a part of a SIMIODE eraction between hu	ently been popular on many college campuses. In this uman-zombie behavior, two populations (Humans and workshop, I developed a mathematical modeling activity mans and zombies using the SIR model. In this talk, I will I as how I use the activity in my Differential Equations

UT5.1	Saturday	Chipkill: The Power of Finite Fields
	10:00 a.m.	
Cannon McIntosh		Coastal Carolina University
In coding theory, SECDED codes are commonly used and capable of detecting up to two bit errors and		
correcting one bit error. We will explore the mathematics behind Chipkill error correction and		
demonstrate how it outperforms SECDED correction via clever use of finite fields.		

CP8.4	Saturday	Incorporating Stochasticity into Models
	11:00 a.m.	
Erin McNelis		Western Carolina University
Erin McNelisWestern Carolina UniversityOur Introduction to Scientific Computing course uses modeling to motivate the investigation of different mathematical technology and tools. We typically start with standard discrete models, su as a predator-prey or disease model, and transition into continuous models and stage-based model To make models more realistic, we can add stochasticity to the model by introducing some variabil to parameter values. This talk will introduce some ways you can do this in your models and simulations. We will also explore how numerical methods would need to change when working will stochastic models.		ols. We typically start with standard discrete models, such transition into continuous models and stage-based models. d stochasticity to the model by introducing some variability ice some ways you can do this in your models and

UT6.5	Saturday	Symmetry in Atonal Music
	11:20 a.m.	
Sergei Miles		Appalachian State University
complete re-ordering classes repeat equall subset of notes and a	s a twelve-tone row y in a composition. T woids key-structure i	ermutations of a given twelve-tone row. By including the composer guarantees that each of the twelve pitch- herefore, the composer gives no preference to a particular n the music. We investigate symmetry in twelve-tone rows s for microtonal systems.

UP1.12	Saturday 10:10 a.m.	Improved convergence of fixed point iterations with Anderson acceleration
Allison Miller		Clemson University

We study theory and applications for Anderson accelerated fixed point methods. We prove an improved convergence rate for the 1D setting, and apply the method to several test problems, including the lid driven cavity for incompressible fluid flow.

CP2.5	Friday	Time Delays in Differential Equations
	3:20 p.m.	
George Moss		Union University
models include inform delay differential equ	mation about past sta lations (DDE). We pr lenon of drug absorp	te of change is based on the state at present, but many ates of the system. These models can be formulated as esent a brief introduction to the field of DDE and then tion delays. We compare this to a compartment model

SS10.3	Saturday	Abracadabra: Math, Magic, and More!
	10:40 a.m.	
Andrew Mosteller		Lenoir-Rhyne University
In this talk, we will briefly discuss the history of math, magic, and how they interact. We will also		
explore two very powerful, self-working card tricks (relying fully on mathematics, no sleight of hand		
required). In addition, we will reveal the underlying mathematics and method behind these tricks		
which use key concepts from Group Theory and Number Theory. We will also go over how		
generalizations of this method can be used to create new possibilities of self-working card tricks.		

CP3.6	Friday	The Distance to a Squarefree Polynomial	
	3:40 p.m.		
Richard Moy		Lee University	
In the 1960's, Turár	In the 1960's, Turán asked whether there exists a constant C such that for every polynomial		
$f(x) = \sum_{i=0}^{n} a_i x^{n-i}$ (a_i integers, $a_0 \neq 0$), there is a polynomial $g(x) = \sum_{i=0}^{n} b_i x^{n-i}$ (b_i			
integers) irreducible	integers) irreducible over the rationals satisfying $L(f - g) \coloneqq \sum_{i=0}^{n} \mathbf{b}_i - a_i \le C$? We		
investigate the analogous problem where $f(x)$ is a polynomial over \mathbb{Q} or \mathbb{F}_p and $g(x)$ is			
squarefree. We prove a bound of $O(n^{\epsilon})$ for C and prove that one can choose $C = 1$ for sma			
n.			

CP6.4	Saturday	Improving Program Assessment of the Mathematics Major
	11:00 a.m.	
Bernadette Mullins		Birmingham-Southern College
The mathematics faculty has collaborated on programmatic assessment of the major to improve both		
the process for selecting assessment problems and inter-rater reliability for rubric-based scoring. We		
describe our efforts and preliminary results.		

CP5.6	Friday	Radio Graceful Cartesian Powers
	3:40 p.m.	
Amanda Niedzialomski		University of Tennessee Martin
Radio graceful graphs are graphs that can be radio labeled with consecutive integers, and therefore		
have the minimal radio number of any graph of specified order. It has been shown that the Cartesian product of t copies of the complete graph K_n , denoted K_n^t , is radio graceful. We will explore what we		
can say about G^t for an incomplete graph G .		

CP8.2	Saturday	2-Wasserstein distance between self-similar measures
	10:20 a.m.	
Robert Niedzialomski		University of Tennessee at Martin
We study the 2-Wasserstein distance between self-similar measures via approximation by certain		
discrete iterations of the Hutchinson operator. The main goal is to derive nontrivial bounds for the		
distances between these approximations and the self-similar measures.		

CP7.1	Saturday	Group Actions of Llie Groups on Flag Manifolds: Orbits
	10:00 a.m.	
Ben Ntation		Austin Peay State University
geometric objects re representation of con the parameter space	lated to the manifold mplex linear group or s of linear subspaces, . We will consider in p	rise to induced actions on the parameter spaces of certain s in question. For instance, from the canonical the n-dimensional complex plane, one obtains actions on that is, Grassmannians of k-dimensional subspaces, flag particular, the parameter space of orbits of real flag manifolds.

SS11.6	Saturday	An Examination of the Impact of Affordable Learning Georgia Textbook Transformation Projects on Instruction,
	11:40 a.m.	
		Learning, and Student Achievement at Albany State
		University
Zephyrinus C. Okonkwo		Albany State University
University System of Georgia (USG) encourages faculty members to apply and receive the Affordable		
Learning Textbook Transformation Grants which enable them to develop resources as well as utilize		
Open Education Resources (OER) for course instruction. In most cases, these courses are zero-cost		
textbook courses, whereby every student in the class has access to an ebook. The ebook is usually		
reposed on the course learning platform (GeorgiaView). This state-wide grant has saved students		
millions of Dollars. In this presentation, we discuss the data collected on such grant activities on three		
distinct courses which have led to positive outcomes.		

CP5.4	Friday	A Scalable Pluggable Cryptographic Algorithm for
	3:00 p.m.	Enterprise Blockchain Sub-Channels.

Robert Steven OworAlbany State UniversityIn this paper, we review the state of pluggable Cryptographic algorithms for Enterprise Blockchains.Cash Fault Tolerant (CFT) and/or several variants of Byzantine Fault Tolerant (BFT) protocols are
increasing being used in enterprise blockchain systems. Privacy and Security in Enterprise-Grade
Permissioned Blockchain networks is accomplished by the use of sub channels which are set up to
enable communication among only approved blockchain nodes. When the number of transactions
becomes large, initiation, establishment, communication, and dissolution of sub-channels can
become expensive, time consuming and prohibitively slow for Enterprises requiring fast and efficient
smart contracts and transaction processing. We propose the development of pluggable pre-
programmed standardized sub-channels which can greatly increase the efficiency and speed of
initiation, establishment, communication, and dissolution of sub-channels.

CP1.3	Friday	A Follicle Wave Model with Applications
	2:40 p.m.	
Nicole Panza		Francis Marion University
waves occur per men regulation of the men exhibits waves of ant	strual cycle. A nonlin nstrual cycle for a two ral follicles during a v	in women by Baerwald et al. (2003). Typically two or three ear differential equation model representing the hormonal p-wave and a three-wave cycle are presented. The model voman's cycle using a Follicle Stimulating Hormone explore phenomenon such as early menopause and

UT3.6	Friday 3:40 p.m.	A Series of Series Topologies on N
Zachary Parker		University of Tennessee-Martin
Each series of real positive terms gives rise to a topology on N = {1, 2, 3,} by declaring a proper		
subset A ⊆ N to be closed if the series converges. We explore the relationship between analytic		
properties of the series and topological properties on N.		

SS4.3	Friday	Prevalence of Obesity Among Adults and Youth in the	
	2:40 p.m.	Southeastern Region and a Dire Need of Effective	
		Intervention	
Laxmi Paudel		Albany State University	
Overweight and obes	ity has been a major	health problem in the United States. The severity is highest	
in the southeastern re	in the southeastern region. Contagious effect is a significant factor for the progression of the obesity		
and its identification	and its identification can lead to effective planning in the intervention of the obesity epidemic. In this		
paper, we present a s	paper, we present a simple mathematical model for the current epidemiological dynamics of obesity		
in the southeastern region. We discuss the contagious nature of obesity in its transmission among			
friends and relatives. We also purpose some affirmative actions to the public health policy makers,			
the city planning auth	the city planning authority, and the community itself that could minimize and even reverse the		
pattern of obesity.			

CP6.5	Saturday	Mahematics at Black Mountain College
	11:20 a.m.	
David Peifer		UNC Asheville
operated from 1933- contemporary art. M	1957. Despite it's sho ost people assume th e and mathematics fa	I liberal arts college, located near Asheville, NC. The college ort life, BMC has had a tremendous influence on modern and hat BMC was an art school. However, the college attracted aculty. In this talk, we will investigate some of the BMC.

SS3.1	Friday	Human Cellular Automata Activities
	2:00 p.m.	
Andrew Penland		Western Carolina University
Cellular automata are simple systems that produce complex and fascinating results. They have been used to describe the growth of human embryos, the synchronizing of firefly lights, and the construction of prehistoric temples. We will show an "explanation by experience" of cellular automata, ideal for non-experts. People who come to this talk should expect to become part of a cellular automaton.		bryos, the synchronizing of firefly lights, and the ill show an "explanation by experience" of cellular

SS11.2	Saturday	Designing and Evaluating OERs in Mathematics Modeling
	10:20 a.m.	
Marnie Phipps		University of North Georgia
modeling students. In teaching and learning these materials to th dispositions and mat	n a single academic ye g practices as a guide ose that are currently hematical views to m ght the affordances a	ation of open educational resources for mathematics ear, we sought to use the NCTM's (2014) eight effective to develop course materials, pilot, modify and compare r in use at our institution. We use students' content growth, ake comparisons and conclusions. As we share our positive nd challenges of the project, we focus on how open I reform efforts.

SS11.3	Saturday	Using Historical Timeline Exercises in a Mathematics
	10:40 a.m.	Course
Mike Pinter		Belmont University
I include a variety of mathematics. The m 1950; examples inclu Arrow. I will share so	topics and influential ajority of the topics a de symbolic logic, vo ome interactive timeli ay of class, to help stu	eneral education requirement for Honors Program students, people from within mathematics and outside of and people are associated with the time period from 1850 to ting methods, Bertrand Russell, Kurt Godel and Kenneth ine exercises that I have used in class, including a fun udents solidify connections between various topics, nvolved.

SS3.2	Friday	Set Squares
	2:20 p.m.	
Sarah Poiani High Point University		High Point University
can be used to create examined and the ne	Set is a popular card game with many fascinating mathematical properties. We will discuss how sets can be used to create an analog for word ladders and squares. The length of Set Ladders will be examined and the new structure, Set Squares, will be introduced. A method for constructing Set Squares is demonstrated.	

SS4.1	Friday	Can NFL Overtime Be Made Fair?	
	2:00 p.m.		
Megan Powell		University of North Carolina Asheville	
In recent years, there	In recent years, there have been multiple NFL playoff games that have gone into overtime, renewing		
long standing call that	long standing call that the overtime system was still not fair despite recent modifications to overtime		
rules. In this talk, we	rules. In this talk, we look at fairness of overtime by considering a Markov chain model of the current		
modified sudden dea	modified sudden death overtime format and propose an alternative modified sudden death format		
where both teams are guaranteed possession of the ball at least once. Additionally, we consider how			
the reduction of overtime length from 15 minutes to 10 minutes may affect the fairness of the game			
based on length of the first possession of the ball.			

10:10 a.m. Alec Powers	
Alec Powers	
There is an activity that involves figuring out the number of different cubes a person could get if they were coloring the faces of the cube with three different colors. This activity is lengthy and tedious to most, because most people list out all the different possibilities. Is there a way to generalize this activity or change it in any way? The answer to this question can be found by looking at an abstract algebra topic, groups acting on sets. In this research, we will use Burnside's formula and groups actir on sets to find the number of distinct colorings for different shapes. We will vary parameters such as	

C9.5	Saturday	Regression to the Nice: Support Vector Machines,
	11:20 a.m.	Politeness Strategies, and Game Theory in Online Message
		Boards
Jason Quinley Uni Tuebingen/ Quintessence Consulting		
Mathematicians and programmers often use online fora from the <i>Stack Exchange</i> community to request help answering questions in their field. This includes the two most popular sub-communities like <i>Mathematics</i> (1.1 million questions) and <i>Stack Overflow</i> , a forum for programmers with over 17 million questions.		

Preliminary statistics like those seen in the *Stanford Politeness Corpus Study* suggest that the reputation of a user may impact their style of request. This dovetails with two game-theoretic models of requests: costly signaling and reciprocal exchange. Each has documented mathematical formalisms, signaling games and trust games, with equilibrium conditions determined by relative weights of game parameters. For instance, costly signals stabilize if they allow receivers to distinguish between senders and reciprocal exchange stabilizes with sufficiently patient players or high risk of investment.

We present multiple regression analyses using mean length utterance and a politeness classifier to test whether an utterance's score on either of these measures positively correlates to an increased probability of being answered or upvoted. The classifier is a support vector machine trained on the Stanford Politeness Corpus to detect the probability that an utterance is polite, given its values on a linguistically determined feature vector. We use these results to evaluate whether conditions are appropriately weighted to sustain the aforementioned equilibria.

CP9.4	Saturday	The Evolution of Exploitation: Sympathetic Utility Functions
	11:00 a.m.	in Evolutionary Games
Jason Quinley		Uni Tuebingen/ Quintessence Consulting
Evolutionary game th	neory models behavio	or via the replicator equation $\frac{dx}{dt} = x(EU_x - \overline{EU})$. I.e. a
variant's growth rate	$\left(\frac{dx}{dt}\right)$ is the product o	f its current proportion x and its fitness (EU_{χ}) relative to the
population as a whol	e (EU). Evolution is	s not merely biological, however. We can model cultural
evolution with sympa	athetic agents by a w	eighted utility function $V_A = (1-s)U_A + sU_B$, where U is the
payoff to the agents <i>A</i> and <i>B</i> in the original game, and <i>V</i> determines the payoff they experience. For instance, players with 20% sympathy receiving respective payoffs of 5 and 0 will <i>experience</i> payoffs of 4 and 1.		
Although much attention has been paid to the conditions necessary to change a player's behavior to a cooperative type, sympathy may lead to exploited players, as a player may have no incentive to change behaviors. We give several examples from two- and three-strategy games, including a game of		
weak commitment based on the Stag Hunt and Prisoner's Dilemma. In the game of weak		
commitment, we see that sympathy removes the evolutionary stability of the exploited outcome. We		
contrast this with the stability of exploited outcomes predicted under the Folk Theorem. Applications		
to marriage markets and verbal contracts will be discussed. We will present our results using an		
interactive Jupyter notebook.		

SS5.5	Friday	Social Science and Service: Reflections on Teaching Game
	3:20 p.m.	Theory
Jason Quinley		Uni Tuebingen/ Quintessence Consulting
In this talk we give several highlights from teaching a Game Theory seminar to advanced high-		
schoolers at a Southern college-prep school with a focus on Servant Leadership. Notable assignments		
include using NetLogo for simulating Schelling's segregation model in the week of the Martin Luther		
King Jr. holiday, white paper assignments exploring Arrow's Impossibility Theorem using LATEX, and		
classroom experiments on the repeated Prisoner's Dilemma.		

SS9.1	Saturday	BIG Data Meets Small-Town Issues: Python, Pandas,
	10:00 a.m.	Politics, and Policy Consulting
Jason Quinley		Uni Tuebingen/ Quintessence Consulting

The era of Big Data and BIG jobs has brought newfound attention to mathematics and mathematicians. Leveraging mathematical insight requires coding ability, community buy-in, and, inter alia, a strong pipeline between local governments, academia, and industry. To that end, our company works to strengthen quantitative literacy among local governments, citizens, and STEM educators. This effort not only includes working with community organizations but also strategic analytics for political campaigns including school board, mayoral, and Congressional races. We will present three highlights from our company's recent efforts:

• Voter database manipulation and strategy using relational algebra and Jupyter notebooks.

• Advocacy and awareness building for adopting ranked-choice voting and improving voter turnout.

• Professional development via open-membership data science meetings.

We welcome discussion on all of these issues and solicit feedback into our current efforts with crime prevention. We will also discuss the benefits of community involvement for the research-oriented mathematician and data scientist.

UT4.2	Saturday	A Graph Theory Approach to Gerrymandering
	10:20 a.m.	
Kelsey Quinn		High Point University
maps can be modele talk will be on conne	d in various ways suc ctions between gerry gs that represent ham	strict boundaries to favor one party over another. District h as graphs and corresponding matrices. The focus of this mandering, graph theory, and matrix observations. We are iming distances, matrix differences, and upper triangular rict maps.

CP2.4	Friday	Existence of minimal and maximal solutions for Caputo
	3:00 p.m.	fractional differential equations with bounded delay
Diego Ramirez		Savannah State University
In this presentation we consider a fractional differential with bounded delay with Caputo derivative or		
order q, 0 <q<1.after and="" coupled="" defining="" different="" lower="" of="" prove<="" sets="" solutions="" td="" upper="" we=""></q<1.after>		
that there exist two sequences of iterates that converge uniformly and monotonically to minimal		
and maximal solutions of the problem. Furthermore, we state conditions that guarantee that both		
sequences converge to a unique solution.		

SS9.2	Saturday	Mentored Teams of Undergraduates in Real World
	10:20 a.m.	Consulting
John R Ramsay		The College of Wooster

One of the difficulties in mathematics education is providing a good answer to the "What can I do with mathematics?" question. Applied examples and projects within existing mathematics courses can help answer this but often aren't close enough to real world applications and they can consume considerable course time. We have addressed this difficulty with a summer program that gets students solving real world problems. The College of Wooster Applied Methods & Research Experience is a summer program that employs students to work as consultants in the local community. Students generally work in teams of three with a mathematics or computer science faculty member acting as mentor. Clients of the program come from business, industry, government agencies, and service organizations. The program, funded primarily by client fees for services rendered, is a model that demonstrates that even at early undergraduate level, mathematics students have marketable skills that can be leveraged into experiential eduation opportunities.

СР3.3	Friday 2:40 p.m.	Singularity of Nilpotent Lie Algebras Constructed From Graphs
Allie Ray	2.40 p.m.	Birmingham-Southern College
Starting with a directed edge-labelled graph, we introduce two methods for constructing a two-step		
nilpotent metric Lie algebra. We will see how the singularity of these Lie algebras, as well as other		
aspects of their geometry, can be determined by properties of the graphs.		

GS1.2	Friday	Tales of Impossibility
	4:15 p.m.	
David Richeson		Dickinson College
dream. Yet there are look at some of the n ancient Greek geome trisect angles, double	"Nothing is impossible!" It is comforting to believe this greeting card sentiment; it is the American dream. Yet there are impossible things, and it is possible to prove that they are so. In this talk we will look at some of the most famous impossibility theorems—the so-called "problems of antiquity." The ancient Greek geometers and future generations of mathematicians tried and failed to square circles trisect angles, double cubes, and construct regular polygons using only a compass and straightedge. I took two thousand years to prove conclusively that all four of these are mathematically impossible.	

CP6.3	Saturday	A study of student perceptions of office hours
	10:40 a.m.	
Lake Rylie Ritter		Kennesaw State University
Faculty-student inter	actions are positivel	y correlated with a variety of student outcomes, and office
hours are an essential component of the faculty-student relationship. At present, few rigorous studies		
are available to guide faculty towards best practices in office hour implementation. This talk reports		
on a study conducted to address three questions related to this area: How do students entering an		
introductory course understand office hours (their use, value, and academic role)? Does office hour		
attendance affect stu	attendance affect student perceptions of office hours? Do demographic factors, such as gender or	
race, correlate with t	he answers to these	first two questions?

SS8.4	Saturday	Discussing the Definition of Limits in Calculus
	11:00 a.m	
lason Rusodimos		Perimeter College at Georgia State University
posed. When present cause a series of prob	ting limits to calculus plems. We show with a also discuss ways of	the limit of a function depends on how the definition is students we often de-emphasize the definition which can an example that that is not easily calculated unless the f teaching limits, particularly in multivariate calculus courses

CP1.6	Friday	Real World Application of Numerical Solution of Complex
	3:40 p.m.	Equations
Jayanti Rani Saha		Albany State University
An algorithm is developed to solve different types of complex equations and results from proposed		
algorithm are verified by the results obtained from commercially available software Wolfram Alpha.		
Finally the algorithm is used to extract experimentally complex effective permittivity of several Teflon		
blocks placing inside a WR-284 rectangular waveguide and exciting with microwave frequencies from		
2.6 to 3.95 GHz.		

SS5.3	Friday	Statistics Reimagined: The Courage to Make Substantial	
	2:40 p.m.	Changes	
Brandon Samples		Georgia College	
Every educator wants	Every educator wants their classes to be impactful. Moreover, every educator knows that students		
have to take ownersh	have to take ownership of their learning for this to be realized. Often our teaching is - at least initially		
- a reflection of our own past learning experiences. In time, our teaching evolves as we implement			
modest, incremental changes based on the theories of ourselves and others. For myself, many years			
of modest changes p	of modest changes produced modest positive improvements. During this talk, I will share with the		
audience my new probability and statistics inquiry-based course. I will share my course text and			
materials, my student-centered instructional methodologies, and some comparative analysis of past			
and present. Ultimate	and present. Ultimately, I will discuss my decision to break free from the incremental changes in favor		
of having the courage to make a substantial change.			

CP2.2	Friday	DAMPED INFINITE ENERGY SOLUTIONS OF THE 3D EULER
	2:20 p.m.	AND BOUSSINESQ EQUATIONS
Alejandro Sarria		University of North Georgia
We revisit a family of infinite-energy solutions of the 3D incompressible Euler		
equations proposed by Gibbon et al. and shown to blowup in finite time by Constantin. By adding a		
damping term to the momentum equation we examine how the damping coefficient can arrest this		
blowup. Further, we show that similar infinite-energy solutions of the inviscid 3D Boussinesq system		
with damping can develop a singularity in finite time as long as the damping effects are insufficient to		
arrest the (undamped) 3D Euler blowup in the associated damped 3D Euler system.		

CP6.1	Saturday	Using 3D Technology in a Calculus Course
	10:00 a.m.	
Jason Schmurr		Lee University
We will discuss ways of incorporating 3D printing and virtual reality technology into a multivariable calculus course.		

GS2.1	Saturday	All Tangled Up
	8:45 a.m.	
Carol Schumacher		Kenyon College
: Toys have inspired	a lot of interesting m	athematics. The SpirographTM helps children create lovely
curves by rolling a small circle around the inside or the outside of a larger circle. These curves are		
called hypotrochoids and epitrochoids and are special cases of mathematical curves called roulettes.		
A roulette is created by following a point attached to one curve as that curve "rolls" along another		
curve. Another children's toy, the TangleTM, inspired some students and me to investigate roulettes		
that we get by rolling a circle around the inside of a "tangle curve," which is made up of quarter		
circles. The resulting roulettes we named "tangloids." In this talk, we will look at many pretty		
pictures and animations of these curves and discuss some of their interesting properties. As a bonus,		
I will discuss the nature of generalization, which is very important in mathematics.		

CP9.2	Saturday	Analog Computers for the Present Time	
	10:20 a.m.		
Damon Scott		Francis Marion University	
Without doubt, ana	Without doubt, analog computers are things of the past, but they are also things of the present and		
future for those who know how to create and appreciate them. We will show some analog computers			
of our own construction for computing the time of sunrise and sunset as a function of time of year,			
the sun's altitude in	the sun's altitude in the local sky as a function of time of day, and how sunniness and warmth vary on		
an annual cycle. If time permits, attendees will be given circular analog computers for the			
trigonometric functions, together with a plea that these still have an important place in trigonometry			
classes even in the present day.			

UT3.3	Friday	Using Graphing to Test a Topological Space
	2:40 p.m.	
Edie Shillum	Edie Shillum	
It is an open question if there exists a 1/3-homogeneous fan that is not smooth. A not smooth fan is a		
fan where the arms tend to bend back towards the vertex. I will discuss an attempt to construct a 1/3-		
homogeneous non-smooth fan. Then I will describe how I created sequences and graphing programs		
in Python to help determine whether this construction is correct.		

CP5.1	Friday	The primes of $\mathbb{Z}[\sqrt{10}]$
	2:00 p.m.	

Andrew J. SimosonKing UniversityWhat are the units, irreducibles, and primes of the ring $\mathbb{Z}[\sqrt{n}]$ ---the set of all numbers $a + b\sqrt{n}$ where a and b are integers and n is a fixed positive square-free integer? In the ring \mathbb{Z} , primes andirreducibles are synonymous and its units are ± 1 . $\mathbb{Z}[\sqrt{n}]$ is wilder, and our modest goal is to catalogall such numbers for $\mathbb{Z}[\sqrt{10}]$, where a and b range from 0 through 10. Here are few teasers: 3 $+\sqrt{10}$ is a unit; 2, 3, 5, and 7 are irreducibles, but not 31; and 7 is the least positive integer that isprime in both \mathbb{Z} and $\mathbb{Z}[\sqrt{10}]$.

CP1.5	Friday	Nonlinear Time Series for Modeling Ancient Climates
	3:20 p.m.	
Justin R. Sims		University of Tennessee at Martin
geologist with paleod (stalactites and stalag the ratios of carbon- vegetation, which in illustrate the model u	climate reconstruction gmites) correspond to 13 isotopes and of ox turn, gives information using data collected for	ssive (VMTAR) model is proposed as a useful tool in aiding ns. Geologists hypothesize that the layers of a speleothem o annual deposits, similar to tree rings. In these same layers, ygen-18 isotopes provide information on the types of on into the climate at the time that vegetation lived. We rom Raccoon Mountain Cave, TN, and show improvements a statistical and geological perspective.

UT6.4	Saturday 11:00 a.m.	The Quaternions, a 4-Dimensional Playground
Freeman Slaughter		
curious traits of these	This is an exposition on the interesting properties of the quaternions. We plan to delve into the more curious traits of these four-dimensional extensions on the complex numbers, and demonstrate why they're worth studying.	

UT6.3	Saturday	A Fibonacci and Lucas Identity
	10:40 a.m.	
Elizabeth Spoehel		The Citadel
In this talk, we give an overview of Fibonacci and Lucas numbers as well as show the steps used to		
solve Problem B-1218 from the Fibonacci Quarterly. We also show the identities used in solving the		
problem mentioned above and explain the process used to arrive at the solution.		

SS5.4	Friday 3:00 p.m.	Activity Based Learning for Statistics
Catherine Starnes		Belmont University

Statistics is a challenging area of mathematics for many students to learn. The field of statistics exists in an overlap between math and science which can cause students to feel as though it consists of a different "language". There have long been observations in the Statistical Education literature that students may gain a more thorough understanding of statistical concepts through class activities rather than traditional lectures. This presentation will describe specific class activities that may be utilized in a basic statistics course and will provide reflections over the benefits and challenges of using such activities.

UP1.14	Saturday	Domination in Hexagonal Grid Graphs
	10:10 a.m.	
Luke Steel		Berry College
In a graph G with vertex set V, a dominating set D is a subset of the vertex set such that every vertex		
in the graph is either an element of D or adjacent to an element of D. The domination number of a		
graph is the minimum cardinality of a dominating set. In this poster we consider the domination		
number of graphs in a hexagonal grid. In particular, we consider concentric rings of hexagons and		
determine the domination number of each graph based on the number of rings.		

UT2.5	Friday	A Mathematical Model for Tumor Growth and Treatment	
	3:20 p.m.	Using Virotherapy	
Jessica Stevens		Winthrop University	
We present a system	We present a system of four nonlinear differential equations to model the use of virotherapy as a		
treatment for cancer.	treatment for cancer. This model describes interactions among infected tumor cells, uninfected tumor		
cells, effector T-cells, and virions. Using various stability analysis techniques, we establish a necessary			
and sufficient treatm	and sufficient treatment condition to ensure a globally stable cure state. We additionally show the		
existence of a cancer persistence state when this condition is violated and provide numerical			
evidence of a Hopf bifurcation under estimated parameter values from the literature. We conclude			
with a discussion on the biological implications of our results.			

UT1.6	Friday	Anti-Ramsey Numbers for Hypergraphs
	3:40 p.m.	
Will Stiles		Western Carolina University
unordered <i>r</i> -tuples or number of colors tha vertices without proc	f vertices that form h t can be used to colo lucing a rainbow copy	s of a nonempty set <i>V</i> of vertices and a collection <i>E</i> of yperedges. The anti-Ramsey number $ar_n(H)$ is the maximum r the hyperedges of a complete <i>r</i> -uniform hypergraph on <i>n</i> y of <i>H</i> . In this talk we will explain how complimentary he evaluation of anti-Ramsey numbers.

CP8.5	Saturday 11:20 a.m.	Support Sets of Nonlinear Functionals
Jessica E. Stovall		University of North Alabama

Any Dedekind complete Banach lattice with a quasi-interior point is lattice isomorphic to a space of continuous, extended real-valued functions defined on a compact Hausdorff space. An orthogonally additive, continuous, monotonic, and subhomogeneous nonlinear functional is studied. In this case, the concept of integration is no longer valid. In a 2017 paper with William A. Feldman (University of Arkansas), a measure related to the nonlinear operator was constructed and the associated linear operator was studied. This talk discusses the results from a recently accepted paper where it is shown that these associated linear operators are unique. Additional results using these associated linear operators to study the support sets of nonlinear functionals will also be presented.

CP1.4	Friday	Modeling the Devastation of Hemlock Trees in the Great
	3:00 p.m.	Smoky Mountains
Jillian Stupiansky		University of North Alabama
The Hemlock Woolly Adelgid has caused a steep decline in both the health and number of hemlock		
trees in the Great Smoky Mountains National Park. HWA is an insect that feeds on a hemlock's sap,		

preventing the spread of nutrients throughout the tree and eventually causing the tree's death. We have created a mathematical model to represent the spread of the devastation. Analysis and simulations of our original model indicated some discrepancies with the real-world behavior of the infestation, so with input from a park biologist, we have updated and improved the accuracy of our model. We will discuss the creation of both models, as well as the resulting analysis and simulations. Our ultimate goal is that the theoretical model can be used to help find a solution that will revive the hemlock population.

CP1.1	Friday	Modeling the Immune Response of Celiac Disease
	2:00 p.m.	
Cara Sulyok		University of Tennessee, Knoxville
Celiac disease	is a hereditary autoimm	nune disease that affects approximately 1 in 133 Americans. It is
caused by a re	action to the protein gl	uten found in wheat, rye, and barley. After ingesting gluten, a
•		ience a range of unpleasant symptoms while small intestinal villi,
essential to nutrient absorption, are destroyed in an immune process mediated by T cells. The only		
known treatment for this disease is a lifelong gluten-free diet and there is currently no drug		
treatment. A gluten-free diet will not address the damage in all cases; this is referred to as refrac		address the damage in all cases; this is referred to as refractory
celiac disease.		
This preliminary work provides a mathematical framework to better understand the biological and		
immunological mechanisms in celiac disease. The model will be able to analyze various theories		
behind the progression of this disease by capturing the dynamics of a healthy subject, a patient with		
celiac disease, and a patient with refractory celiac disease. By doing so, we can evaluate and sugge		
potential therapies to mitigate the effects of celiac disease.		

SS9.4	Saturday 11:00 a.m.	My Transition into the Defense Industry
James Sunkes		Dynetics, Inc. and The University of Alabama - Huntsville

For as long as I can remember, my career goals were to get a doctorate and become a tenured professor at a university. In late 2015 and early 2016, several months before I was going to graduate with my doctorate, I applied to roughly 100 academic jobs of various types with the hopes of continuing my journey towards getting a tenure track position. I had a phone interviews for some of these jobs, but come early April 2016, I had not gotten an in-person interview for any job and I had not received an offer from anywhere. Fearing that I had missed out on an academic job, I started looking for jobs in industry where I found the job that I currently have today. In this talk, I want to discuss my transition from academic jobs into industry, my experience and satisfaction working at my current company Dynetics, and my advice and encouragement to students who are considering the same transition.

CP4.2	Friday	Order Properties of Unlabeled Induced Subgraphs
	2:20 p.m.	
Scott R Sykes		University of West Georgia
The set of all unlabeled induced subgraphs of a finite graph G can be made into a poset by defining		
$H_1 \le H_2$ iff H_1 is an induced subgraph of H_2 . In this presentation, we will show some relationships		
between the order theoretic properties of this poset and the properties of the graph G. In particular,		
we will be discussing the concept of similar and pseudo-similar vertices in G and showing how they		
are related to the structure of the poset.		

CP2.1	Friday	Mathematical model for the fabrication of quantum dots	
	2:00 p.m.		
Wondimu Tekalign		Department of Mathematics, Savannah state university	
We consider a contin	uum model for the e	volution of an epitaxially-strained dislocation-free thin solid	
film on a deformable	film on a deformable substrate in the absence of vapor deposition. By using a thin film approximation		
we derived a nonline	we derived a nonlinear evolution equation. We examined the nonlinear evolution equation and found		
that there is a critical	that there is a critical film thickness below which every film thickness isstable and a critical wave		
number above which every film thickness is stable. And we developed a numerical method for the			
evolution of strained solid films under the thin film approximation. We tested our numerical method			
using known cases, and further characterized the family of equilibrium shapes in terms of the film			
thickness and the spatial periodicity for both two-dimensional (island ridge) and			
three-dimensional (quantum dot) morphologies.			

UP1.15	Saturday	Experimenting with Electricity: Analyzing Irreversibly
	10:10 a.m.	Electroporated 293-T and HeLa cells
Leah Terrian		Lee University
Irreversible Electroporation (IRE) is an ablation technique being studied recently for its unique ability to destroy cancer cells without damaging the surrounding tissue. IRE is administered through short electric pulses that creates holes or "pores" in the lipid bilayer of the cell membrane. The cells then swell with excess fluid and burst. IRE is an especially promising method for treating unresectable		
pancreatic cancer. This experiment was designed to compare three different variables in vitro; cell line, voltage, and time. Three trials of both 293-T (kidney cancer) and HeLa (cervical cancer) cells were		

run with shock voltages of 100V, 300V, 500V, 700V, and 900V. Cell viability was then measured by hand at 1 and 6 hours after electroporation. By analyzing the collected experimental data, this project aims to better understand how changing variables affects viability after IRE.

CP3.4	Friday	Biconal subspace arrangements	
	3:00 p.m.		
Douglas A. Torrance		Piedmont College	
Suppose we have an	arrangement of cod	imension two linear subspaces in some projective space.	
These subspaces will	either intersect in co	odimension three or codimension four. For example, if we	
have an arrangemen	have an arrangement of lines in three-dimensional space, then these lines either intersect in points or		
not at all. We can visualize such an arrangement using an incidence graph, i.e., a graph whose verte			
set is the set of all subspaces in the arrangement and whose edges correspond to pairs of subspaces			
which intercect in codimension three. It turns out that subspace arrangements whose incidence			
graphs are biconal, i.e., there exist two vertices which are adjacent to all other vertices in the graph			
except each other, have an interesting property all subspaces in the arrangement intersect in the			
same codimension four subspace.			

SS8.5	Saturday	Using Peer Instruction in Vector Calculus to Promote
	11:20 a.m	Conceptual Understanding
Alan Von Herrmann University of Tennessee		University of Tennessee
Peer Instruction (Mazur 1997), an interactive lecture format, has been tailored for Calculus III courses		
at the University of Tennessee. Presenters will demonstrate ConcepTest polling, allowing MAA-SE		
attendees to experience the interactive polling, and will then discuss how Peer Instruction impacted		
students' attendance, students' attitudes, and students' performance.		

CP4.1	Friday	Ascending Subgraph Decompositions in Tournaments of
	2:00 p.m.	Order 6n+5
Brian Wagner		University of Tennessee at Martin
In 1987, Alavi, Boals, Chartrand, Erdős, and Oellermann conjectured that all graphs have an ascending		
subgraph decomposition (ASD). In this talk, we will consider the case of a tournament with order		
congruent to 5 mod 6.		

CP6.2	Saturday	Exploring pre-service teachers' understanding of integer
	10:20 a.m.	multiplication through stories
Ben Westcoatt		Valdosta State University
Understanding integers and their operations is an important step in abstraction as learners continue		
their journeys from whole number arithmetic to algebraic thinking. Research into how young learners		
apprehend integers exists. However, accompanying research into teachers' conceptual understanding		
of integers remains relatively sparse. This sparsity has importance due to the link between student		
learning and teacher understanding. In this current study, I explored pre-service teachers' conceptual		

understanding of integer multiplication. Participants wrote short stories that modeled specified integer multiplication problems. I analyzed the stories to determine the ways students actualized multipliers and multiplicands, specifically when the multipliers or the multiplicands were negative. I will share results of the analysis and if time permits, entertaining stories that the students wrote.

SS8.3	Saturday	Graded Homework in 100-level Mathematics courses:
	10:40 a.m.	Should the students decide ?
Cathy Whitlock		UNC Asheville
A year ago two instructors at UNC Asheville allowed individual students in their Quantitative Literacy		
course to choose whether or not they wanted their daily homework to be graded and included in the		
computation of the final grade. The experiment was an effort to try to reduce the anxiety and		
resentment commonly expressed by students in this course without altering learning objectives or		

lowering standards. The results were so surprising that we expanded the trial to include Precalculus, Calculus I and Intro. Statistics. We were not shocked when we found that the students in Calculus classes were more likely to choose the homework option, but we were still surprised by how many students chose homework and how pleased they were to be given options in the first place.

SS5.6	Friday	Reflection Assignments in IBL Courses
	3:40 p.m.	
Jessica Williams		Converse College
Encouraged by research supporting the effectiveness of inquiry-based learning in undergraduate proof-based courses, several undergraduate math courses at a small college were re-designed to be taught in an inquiry-based learning fashion. To promote student buy-in and self-assessment multiple written reflection assignments were incorporated into the course notes and assignments. Reflection prompts correspond to different points in the course progression and address potential student frustration with inquiry-based learning, student attitudes towards learning and mathematical ability, and performance on exams. This talk will describe the general structure of these IBL courses and		
methods of incorporating reflection assignments. Specific written reflection prompts and assignments will be shared.		

UT4.6	Saturday	Modeling Traffic Flow using Finite Difference
	11:40 a.m.	Approximations
William E. Wooten		LaGrange College
It is often useful to model traffic flow using fluid dynamics, where interactions between vehicles can		
be represented using systems of differential equations. In this talk we will derive a model that		
simulates traffic flow on a single lane road with various boundary and initial conditions, and then use		
the method of finite differences to approximate the solutions.		

CP8.3

10:40 a.m.		
Hong Yue	Georgia College	
We study a function which is introduced to estimate the exponential sum of the Rudin-Shapiro		
sequence. We calculated the fractal dimension of the function as well as that of two related		
functions. We also present the Maple codes used to generate the functions.		